Topic Exam # Algebra Video Solutions to this exam can be found at: www.revisionvillage.com/algebra-exam ## **Question 1** [Maximum mark: 7] An arithmetic sequence is given by 3, 5, 7, ... Write down the value of *d*. (a) [1] (b) Find. > (i) u_{10} . (ii) [4] s_{10} . Given that u_n = 253, find the value of n. (c) [2] ## **Question 2** [Maximum mark: 7] Find the value of each of the following, giving your answer as an integer. (a) $\log_{10}(100)$. [2] (b) $\log_{10}(50) + \log_{10}(2)$. [2] (c) $\log_{10}(4) - \log_{10}(40)$. [3] ## **Question 3** [Maximum mark: 6] Consider the expansion of $(2x-1)^9$. (a) Write down the number of terms in this expansion. [1] (b) Find the coefficient of the term in x^2 . [5] ### **Question 4** [Maximum mark: 6] In an arithmetic sequence, u_5 = 24, u_{13} = 80. - (a) Find the common difference. [2] - (b) Find the first term. [2] - (c) Find the sum of the first 20 terms of the sequence. [2] # **Question 5** [Maximum mark: 6] - (a) Write down the value of. - (i) $log_2 8$ - (ii) $\log_5\left(\frac{1}{25}\right)$ - (iii) log₉3 (b) Hence, solve $\log_2 8 + \log_5 \left(\frac{1}{25}\right) + \log_9 3 = \log_{16} x$. [3] [3] # **Question 6** [Maximum mark: 6] Find the value of (a) $\log_7 98 - \log_7 2$; [2] (b) $49^{\log_7 6}$. [4] # **Question 7** [Maximum mark: 7] In the expansion of $(2x+1)^n$, the coefficient of the term in x^2 is 40n, where $n \in \mathbb{Z}^+$. Find n. # **Question 8** [Maximum mark: 6] Find the values of x when $25^{x^2-2x} = \left(\frac{1}{125}\right)^{4x+2}$. ## **Question 9** [Maximum mark: 14] The first two terms of an infinite geometric sequence, in order, are $$3\log_3 x$$, $2\log_3 x$, where $x > 0$. - (a) Find r. [2] - (b) Show that the sum of the infinite sequence is $9log_3x$. [3] The first three terms of an arithmetic sequence, in order, are $$\log_3(x)$$, $\log_3\left(\frac{x}{3}\right)$, $\log_3\left(\frac{x}{9}\right)$, where $x > 0$. [3] (c) Find *d*, giving your answers as an integer. Let S_6 be the sum of the first 6 terms of an arithmetic sequence. - (d) Show that $S_6 = 6\log_3(x) 15$. [3] - (e) Given that S_6 is equal to one third of the sum of the infinite geometric [3] sequence, find x, giving your answer in the form of 3^P . #### **Question 10** [Maximum mark: 15] The first three terms of an infinite geometric sequence are k-4, 4, k+2, where $k \in \mathbb{Z}$. - (a) (i) Write down an expression for r. - (ii) Hence, show that k satisfies the equation $k^2 2k 24 = 0$ [5] - (b) (i) Find the possible values for k. - (ii) Find the possible values for r. [5] - (c) The geometric sequence has a finite sum. - (i) Which value of r leads to this sum. Justify answer. - (ii) Find the sum of the sequence. [5]