

Topic Exam

Algebra

Video Solutions to this exam can be found at:

www.revisionvillage.com/algebra-exam

Question 1

[Maximum mark: 7]

An arithmetic sequence is given by 3, 5, 7, ...

Write down the value of *d*. (a) [1]

(b) Find.

> (i) u_{10} .

(ii) [4] s_{10} .

Given that u_n = 253, find the value of n. (c) [2]

Question 2

[Maximum mark: 7]

Find the value of each of the following, giving your answer as an integer.

(a) $\log_{10}(100)$. [2]

(b) $\log_{10}(50) + \log_{10}(2)$. [2]

(c) $\log_{10}(4) - \log_{10}(40)$. [3]

Question 3

[Maximum mark: 6]

Consider the expansion of $(2x-1)^9$.

(a) Write down the number of terms in this expansion. [1]

(b) Find the coefficient of the term in x^2 . [5]

Question 4

[Maximum mark: 6]

In an arithmetic sequence, u_5 = 24, u_{13} = 80.

- (a) Find the common difference. [2]
- (b) Find the first term. [2]
- (c) Find the sum of the first 20 terms of the sequence. [2]

Question 5

[Maximum mark: 6]

- (a) Write down the value of.
 - (i) $log_2 8$
 - (ii) $\log_5\left(\frac{1}{25}\right)$
 - (iii) log₉3

(b) Hence, solve $\log_2 8 + \log_5 \left(\frac{1}{25}\right) + \log_9 3 = \log_{16} x$. [3]

[3]

Question 6

[Maximum mark: 6]

Find the value of

(a) $\log_7 98 - \log_7 2$; [2]

(b) $49^{\log_7 6}$. [4]

Question 7

[Maximum mark: 7]

In the expansion of $(2x+1)^n$, the coefficient of the term in x^2 is 40n, where $n \in \mathbb{Z}^+$. Find n.

Question 8

[Maximum mark: 6]

Find the values of x when $25^{x^2-2x} = \left(\frac{1}{125}\right)^{4x+2}$.

Question 9

[Maximum mark: 14]

The first two terms of an infinite geometric sequence, in order, are

$$3\log_3 x$$
, $2\log_3 x$, where $x > 0$.

- (a) Find r. [2]
- (b) Show that the sum of the infinite sequence is $9log_3x$. [3]

The first three terms of an arithmetic sequence, in order, are

$$\log_3(x)$$
, $\log_3\left(\frac{x}{3}\right)$, $\log_3\left(\frac{x}{9}\right)$, where $x > 0$.

[3]

(c) Find *d*, giving your answers as an integer.

Let S_6 be the sum of the first 6 terms of an arithmetic sequence.

- (d) Show that $S_6 = 6\log_3(x) 15$. [3]
- (e) Given that S_6 is equal to one third of the sum of the infinite geometric [3] sequence, find x, giving your answer in the form of 3^P .

Question 10

[Maximum mark: 15]

The first three terms of an infinite geometric sequence are k-4, 4, k+2, where $k \in \mathbb{Z}$.

- (a) (i) Write down an expression for r.
 - (ii) Hence, show that k satisfies the equation $k^2 2k 24 = 0$ [5]
- (b) (i) Find the possible values for k.
 - (ii) Find the possible values for r. [5]
- (c) The geometric sequence has a finite sum.
 - (i) Which value of r leads to this sum. Justify answer.
 - (ii) Find the sum of the sequence. [5]