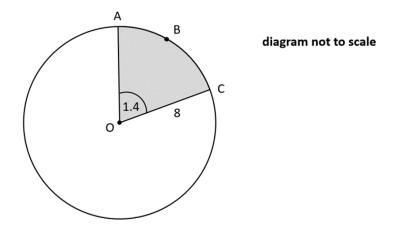


Topic Exam

Trigonometry

Video Solutions to this exam can be found at:


www.revisionvillage.com/trigonometry-exam

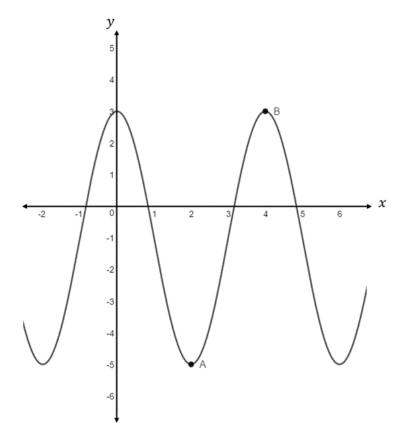
Question 1

[Maximum mark: 6]

The following diagram shows a circle with the centre O and radius 8 cm.

Points A, B and C lie on the circle, $\widehat{A0C} = 1.4 \text{ radians}$

- (a) Find the length of the arc ABC [3]
- (b) Find the area of the shaded region [3]



Question 2

[Maximum mark: 6]

The following diagram shows part of the graph of f.

The graph has a minimum at A(2,-5) and a maximum at B(4,3)

The function can be written in the form $f(x) = a\cos bx + d$. Find the value of

(a) a; [2]

(b) b; [2]

(c) d. [2]

Question 3

[Maximum mark: 7]

The following diagram shows triangle ABC.

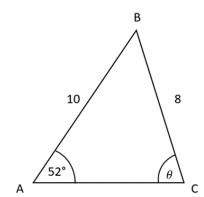


diagram not to scale

AB = 10 cm, BC = 8 cm, and $B\widehat{A}C = 52^{\circ}$.

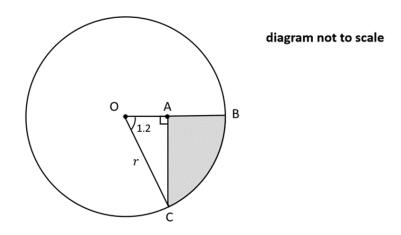
(a) Find
$$A\hat{C}B$$
. [3]

Question 4

[Maximum mark: 8]

Given that $\sin x = \frac{2}{3}$, $\frac{\pi}{2} \le x \le \pi$

(a) $\cos x$. [3]


(b) $\tan 2x$. [5]

Question 5

[Maximum mark: 7]

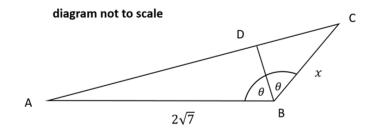
The following diagram shows a circle with centre O and radius r cm.

Points B and C lie on the circumference of the circle, and $\widehat{BOC} = 1.2 \text{ radians}$.

(a) Show that
$$OA = r \cos 1.2$$

[1]

(b) The area of the shaded region is 35cm^2 . Find r.


[6]

Question 6

[Maximum mark: 7]

The following diagram shows triangle ABC. Point D lies on AC so that DB bisects ABC.

AB =
$$2\sqrt{7}$$
 cm, BC = x cm, and DBC = θ , where $\sin\theta = \frac{3}{4}$

The area of the triangle ABC is 3 cm^2 . Find the value of x in the form of $\frac{a}{b}$ where a and b are positive integers.

Question 7

[Maximum mark: 8]

Solve $\cos 2x - \sin^2 x = \cos^2 x + 3\cos x$, $0 \le x \le 2\pi$

Question 8

[Maximum mark: 15]

Consider the function $f(x) = \sin x$.

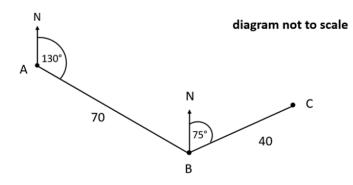
- (a) (i) Write down the maximum value of f.
 - (ii) Find the smallest value of x in radians for which the maximum of f [3] occurs.

Let $g(x) = 2\sin\left(x + \frac{\pi}{4}\right)$.

- (b) Describe the two transformations f(x) undergoes to form the graph of g(x).
 - (ii) Hence, write down the maximum value of the function g and the smallest value of x for which this maximum occurs. [4]

Let $h(x) = \frac{4}{2\sin(x + \frac{\pi}{4}) - 3}$.

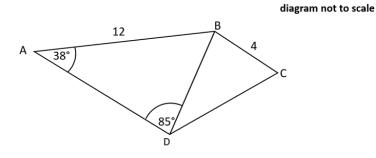
- (c) Does the graph of h have a vertical asymptote? Justify your answer. [4]
- (d) Find the range of h(x). [4]


Question 9

[Maximum mark: 15]

The following diagram shows three cities A, B and C.

City B is 70 km from A, on a bearing of 130°. City C is 40 km from City B, on a bearing of 075°.


- (a) Find \widehat{ABC} . [2]
- (b) Find the distance from City A to C. [4]
- (c) If you wanted to travel from city A directly to City C, find the bearing you would need to travel. [5]
- (d) Find the area enclosed by connecting the three cities in a triangle ABC. [4]

Question 10

[Maximum mark: 15]

The following diagram shows the quadrilateral ABCD

 $AB = 12 \text{ cm}, \quad BC = 4 \text{ cm}, \quad B\widehat{A}D = 38^{\circ}, \quad A\widehat{D}B = 85^{\circ}$

- (a) Find BD. [3]
- (b) Find the area of triangle ABD. [4]

The area of the triangle ABD is three times bigger than triangle BCD.

- (c) Find the acute angle $D\widehat{B}C$. [5]
- (d) Find DC. [3]