

Topic Exam

Vectors

Video Solutions to this exam can be found at:

www.revisionvillage.com/vectors-exam

Question 1

[Maximum mark: 7]

The following diagram shows the parallelogram ABCD.

Let $\overrightarrow{\mathrm{DA}} = p$ and $\overrightarrow{\mathrm{DB}} = q$. Find each of the following vectors in terms of p and q.

(a)
$$\overrightarrow{BA}$$
; [2]

(b)
$$\overrightarrow{BC}$$
; [2]

(c)
$$\overrightarrow{CA}$$
. [3]

Question 2

[Maximum mark: 7]

The following diagram shows the parallelogram ABCD.

Let $\overrightarrow{\mathrm{DA}} = p$ and $\overrightarrow{\mathrm{AB}} = q$. Find each of the following vectors in terms of p and q.

(a)
$$\overrightarrow{AC}$$
; [2]

(b)
$$\overrightarrow{DE}$$
; [2]

(c)
$$\overrightarrow{AE}$$
. [3]

Question 3

[Maximum mark: 8]

0000

Let u = 6i - 2j - k and v = 3i + 5j + 3k.

- (a) Find
 - (i) u+v;
 - (ii) |u|;
 - (iii) |v|. [4]
- (b) Find $u \cdot v$. [2]
- (c) Find the angle between u and v. [2]

Question 4

[Maximum mark: 6]

In the following diagram, $\overrightarrow{CB} = p$, $\overrightarrow{CA} = q$ and $\overrightarrow{AD} = \frac{1}{2}\overrightarrow{AB}$

Express each of the following vectors in terms of p and q.

(a)
$$\overrightarrow{AB}$$
; [2]

(b)
$$\overrightarrow{CD}$$
; [4]

Question 5

[Maximum mark: 6]

The following diagram shows triangle ABC.

Let $\overrightarrow{BA} \cdot \overrightarrow{BC} = -6$ and $|\overrightarrow{BA}| |\overrightarrow{BC}| = 12$. Find the area of triangle ABC.

Question 6

[Maximum mark: 6]

Let u = 3i - 2j + k and v = 4i - 5j + 6k. The vector v - pu is perpendicular to u.

Find the value of p.

Question 7

[Maximum mark: 7]

Let $u = \begin{bmatrix} 2 \\ -1 \\ 5 \end{bmatrix}$ and $v = \begin{bmatrix} m \\ n \\ 0 \end{bmatrix}$. Given that v is a unit vector perpendicular to u, find the

possible values for m and of n.

Question 8

[Maximum mark: 15]

A line L_1 passes through A (-2, 0, 1) and B (1, 4, 1).

(a) Show that
$$\overrightarrow{AB} = \begin{bmatrix} 3 \\ 4 \\ 0 \end{bmatrix}$$
. [2]

- (b) Hence, write down
 - (i) a direction vector for L_1 ;
 - (ii) a vector equation for L_1 in the form $\mathbf{r} = \mathbf{a} + \mathbf{t}b$. [3]

Another line L_2 has an equation $\mathbf{r} = \begin{bmatrix} 4 \\ 2 \\ -3 \end{bmatrix} + s \begin{bmatrix} k \\ -3 \\ 1 \end{bmatrix}$. L_1 and L_2 are perpendicular.

- (c) Find the value of k. [4]
- (d) Show that point C (-4, 8, -5) lies on L_2 . [3]
- (e) Led D be the point such that ABCD is a parallelogram. Find \overrightarrow{OD} . [3]

Question 9

[Maximum mark: 15]

The line L_1 has equation $\mathbf{r} = \begin{bmatrix} 4 \\ -1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$, and point A has coordinates (4, 8, -3).

- (a) Find the coordinates of point B on L_1 , such that \overrightarrow{AB} is perpendicular to L_1 . [8]
- (b) Hence, find the shortest distance from A to L_1 . [3]
- (c) Find the coordinates of the reflection of the point A in L_1 . [4]

Question 10

[Maximum mark: 15]

Consider the points A (3, 2, -5) and B (-3, 6, -5).

(a) Find \overrightarrow{AB} .

[2]

Let C be a point such that $\overrightarrow{AC} = \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix}$.

(b) Find the coordinates of C.

[2]

The line L passes through B and is parallel to \overrightarrow{AC} .

(c) Write down a vector equation for L.

[2]

(d) Given that $|\overrightarrow{AB}| = k |\overrightarrow{AC}|$, find k.

[3]

(e) The point D lies on L such that $|\overrightarrow{AB}| = |\overrightarrow{BD}|$. Find the possible coordinates for D.

[6]